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Full-Wave Boundary Integral Equation Method
for Suspended Planar Transmission Lines with
Pedestals and Finite Metallization Thickness

Lei Zhu, Student Member, IEEE, and Eikichi Yamashita, Fellow, IEEE

Abstract— A new boundary integral equation method is pro-
posed for the full-wave analysis of suspended planar transmission
lines with pedestals and/or finite metallization thickness. Coupled
boundary integral equations are formulated on the equivalent
magnetic currents only on the apertures of subregions using
the Green’s identity of the second kind. Because it is possible
to take a large number of terms in the series expansion of
Green’s functions in each subregion independently from the
order of resulting matrices, this approach can avoid the relative
convergence problem. Numerical results of the present method
on suspended coplanar waveguides are found to have a stable
convergent property and to be in excellent agreement with other
available theoretical results. Numerical data reveal the effects
of conductor thickness and aperture width on the transmission
properties of suspended planar transmission lines with pedestals.

1. INTRODUCTION

USPENDED planar transmission lines with pedestals
and/for grooves have recently been studied as new
promising transmission structures [1]-[3]. Compared with
conventional planar transmission lines, they possess low prop-
agation losses and weak dispersion due to the distribution of
electromagnetic energy into the air region. In addition, they
still retain the merits of easy fabrication and planar configura-
tion. The transmission properties of such suspended striplines
with grooves and/or pedestals have been treated with the quasi-
TEM wave approximation [1] and with the full-wave analysis
without considering finite strip conductor thickness [2]-[3].
In the analysis of electromagnetic boundary-value problems,
the boundary integral equation method has been extensively
employed in the past to derive the cutoff wavelengths of
various waveguides, scattering parameters of waveguide dis-
continuities, and radiation properties of various antennas.
With the assumption of the quasi-TEM wave propagation,
the boundary integral equation method with different basis
functions has been applied to analyze the characteristics of mi-
crostrip lines [4] and coplanar waveguides [5]. The versatility
of the Green’s function makes it possible to use the boundary
integral approach to find solutions for various structures with
complex cross-sections [6]-[8], for instance, a trapezoidal
transmission line or a microstrip line of arbitrary cross section.
In addition, the eigen-function weighted boundary integral
equation method has been proposed for the rigorous analysis of
dispersion characteristics of various planar transmission lines
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with finite metallization thickness such as microstrip lines,
conductor-backed coplanar waveguides and micro-coplanar
strip lines [9]-[10].

In this paper, a full-wave boundary integral equation method
is presented for the rigorous analysis of planar transmission
lines with pedestals and/or finite metallization thickness. A
coupled set of boundary integral equations is set up based on
the Green’s identity of the second kind as a process of the
boundary integration approach. Two kinds of simple scalar
Green’s functions corresponding to the TM-mode and the TE-
mode are selected for each shielded subregion. It is expected
that the overall boundary integration contours are reduced to
only those at the apertures between two adjacent subregions
to result in shorter computation time. Unknown functions in
the integral equations are also limited to those of equivalent
magnetic currents only at the aperture surface.

II. FORMULATION OF BOUNDARY INTEGRAL EQUATIONS

Fig. 1(a) depicts the cross-sectional geometry of a gen-
eralized suspended planar transmission line with pedestals
and/or finite metallization thickness. Many well-known planar
transmission lines can be constructed easily from this pro-
totype structure by properly changing sizes. Although their
propagation characteristics have been studied extensively us-
ing the transverse resonance method and an experimental
method without considering strip thickness [3], there still
remain unsolved problems, such as the effects of the conductor
thickness and aperture width on the transmission properties.

Only half of the general structure in Fig. 1(a) with an
equivalent magnetic wall has to be considered because of the
symmetry of the cross-section, which is shown in Fig. 1(b).
The free-space Green’s function is usually chosen for building
boundary integral equations in the traditional boundary integral
approach. As for the structure with a complex boundary
configuration like Fig. 1(b), a large system of boundary
integral equations will be necessitated according to the above
traditional approach. This may be a principal reason why the
boundary integral approach is hardly extended to the full-wave
analysis of various planar transmission lines until now.

The whole cross-section is firstly divided into four rectangu-
lar homogencous subregions for the cross-sectional geometry
with multiple rectangular subregions. A pair of scalar Green’s
functions for each subregion corresponding to the TM-mode
and the TE-mode are constructed based on the basic solutions
of the Helmholtz’s equation and the homogeneous boundary
conditions for a shielded rectangular subregion. These Green’s
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Fig. 1. Shielded suspended planar transmission lines with pedestals.
(@) Cross-sectional geometry. (b) A half of the cross-section to be analyzed.
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functions are expressed as follows:
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where the symbols, p(z, zs, ¥, ys) and ¢*(z, s, y,ys), de-
note the mth term in the above two Green’s functions in the
ith subregion and are given by (2a) and (2b) at the bottom
of the page and
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where a;, h; and kY, denote the width, the height, and the
propagation constant in the y direction for the ith rectangular
subregion, while (z,y) and (zs,ys) are the coordinates of a
field point and a source point, respectively.

Based on the Green’s identity of the second kind,
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a pair of boundary integral equations corresponding to the
TM-mode and the TE-mode can be set up with integrals
on dielectric interfaces or apertures between two adjacent
subregions as follows:
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where, G¢ and G" denote the two kinds of Green’s functions,
respectively, corresponding to the TM-mode and the TE-mode.
r and r, denote the field and source position, respectively.
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Since the Green’s functions and field component functions
satisfy the same tangential field continuity conditions on
shielded rectangular surfaces except aperture surfaces, only
apertures remain as necessary boundary integral areas. On
the other hand, according to the equivalence principle [11],
electric fields on the jth aperture can be replaced by equivalent
magnetic surface currents in opposite directions, M7 and
—M?7, flowing on the two sidewalls of a perfectly conducting
plane. The magnetic field components in the four subregions
are expressed as follows with simple integral formulas of the
equivalent magnetic currents using the relation derived from
Maxwell’s equations:
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where MJ and M are the two components of the equivalent
magnetic surface currents on the jth aperture T, (j = 1,2,3).
H! and H! denote the two components of magnetic fields
in the ith subregion (¢ = I, II, III, IV), while the symbols,
G, G?, G and G?%, denote four terms of the dyadic
Green's function, which are defined by using the m-th term
g" of the magnetic Green’s functions as:
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Based on the continuity of tangential magnetic components
on each aperture surface between two adjacent subregions, a
pair of general boundary integral formulas on the ith aperture
can be formulated using the Galerkin’s method as

/ wilH (z,y]) — Hy(z,y;)]dz = 0.
Fz

A system of coupled homogeneous boundary integral equa-
tions are constructed by substituting (6) into (8), in which only
equivalent magnetic currents remain as the unknown functions.
In the mixed spectral domain approach [2], the transverse
magnetic fields across the aperture have to be transformed into
the space domain by the inverse Fourier transform because of
the existence of different transform variables on the two sides
of the apertures. The present method carries out all of the
analysis processes only in the space domain, therefore, can
omit the complex Fourier transform, and can treat pieccewise
rectangular cross-section problems easily.

In practical computations, the number of terms in the series
expressions of the Green’s functions and the magnetic currents
are taken as finite, namely, Ny, No, N3 and V4, for the four
subregions and, M, M and M3, on the three apertures, re-
spectively. Choice of the number IV is completely independent
from the number M. Therefore, this approach does not lead to
numerical instabilities or relative convergence problems like
the mode-matching method as discussed in [12]. Simple sine
and cosine functions are selected as the basis functions for
equivalent magnetic currents. These functions can also expres
the accurate solutions of magnetic currents in the analysis of
the suspended planar transmission lines with grooves and/or
pedestals. Moreover, the same functions are chosen as the
weighting functions with the same number of basis function
on the three apertures, that is, M7, My and M3. Consequently,
the coupled boundary integral equations are simplified as the
following form through numerical discretizations:
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(8b)
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where the symbols, [X,] and [Z,], denote the unknown sub-
matrices about the two equivalent magnetic currents in the jth
aperture. [A,], [By,], [Cy,] and [D;,] are four coefficient sub-
matrices with the unknown propagation constant indicating the
effect of the magnetic currents in the jth aperture on the ficlds
in the 7th aperture. Each element of coefficient sub-matrices
is written as
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where the subscripts, ¢ and jj, denote two subregions above
and below the ith or jth aperture in the case (¢ = j), and ij
denotes the subregion between the ith and jth aperture. The
quantities, S}, 512, S7} and S77, are defined in the Appendix.
The summation form of Green’s functions will disappear
naturally with the orthogonal property of basis and weighting
functions with the same sine or cosine functions in subregions
II and IV. These facts also decrease computation time. In
addition, such basis functions as the sine and cosine forms can
also be applied directly to derive the propagation properties of
the fundamental mode and higher-order modes in this method.
Like the mixed spectral domain method, this approach
reduces the integration area of unknown functions only to
apertures between two adjacent subregions. This results in the
decrease of the number of unknown functions, a small system
of equations, and can avoid relative convergence problems
in the transverse resonance method or the mode matching
method, seen in the case of a small aperture width of planar
transmission lines as coplanar waveguides and fin-lines.

III. NUMERICAL RESULTS

The above-mentioned approach can be applied to ana-
lyze the transmission properties of various suspended planar
transmission lines with grooves, pedestals, and/or finite metal-
lization thickness. Fig. 2 shows the comparison of numerical
results obtained by the present method with those given in
[3] for the fundamental and the second order mode of the
nonsymmetrically suspended substrate stripline in the case
of zero-thickness conductor. Fig. 3 shows the dispersion
characteristics of the shielded suspended coplanar waveguide
with strip thickness ¢ = 0 and { = 130 um, the difference
between our results and the data given in [13] is less than 1.0%.

For the structure as shown in Fig. 1, the number of terms
in the truncated series of Green’s functions are proportional to
the widths of each rectangular subregion, while the number
of the magnetic current terms on the three apertures are
chosen as the same value M. In the case of M = 4, the
number N in the subregion I should be larger than 20 for the
aperture width s = 0.6 mm and 120 for s = 0.1 mm to lead
to accurate converging solutions for the suspended coplanar
waveguides with a7 = 4.8 mm, a2 = 6.5 mm, a3 = 5.5 mm,
€ = 10.5,h; = h3 = 2.54 mm, hs = 1.27 mm, w = 1.2 mm.
On the other hand, if N = 400, M larger than 3 ensures high
calculation accuracy. The above-mentioned points are shown
clearly in Fig. 4 indicating the effective dielectric constants
versus IV and M. It is found in Fig. 4 that taking N = 400 and
M = 4 is enough to derive satisfactory numerical solutions
with computation time of 1 minute on a Sun 4 workstation for
one frequency point. To obtain stable solutions for different
subregions of a large ratio widths such as the case of s = 0.1
mm, the present method can be very effective compared with
other methods in the sense of a small number of unknown
functions and low order matrices.

Figs. 5 and 6 provide three dispersion curves for suspended
planar transmission lines with strip thickness ¢ = 1,40, and
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Fig. 2. Comparison of the propagation constants of the nonsymmetrically
suspended substrate stripline calculated by the present method with those
given in [3] for the fundamental and the second order mode. ¢1 = 15.8 mm,
az = 23.86 mm, ag = 22.86 mm, €, = 2.2, h; = 2.286 mm, hg = 0.254
mm, hy = 11.43 mm, w = 10 mm, ¢ = 2.9 mm.
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Fig. 3. Comparison of the propagation constants of the suspended copla-
nar waveguide calculated by the present method with those given in [13]
a; = ag = azg = 1.55 mm, €, = 3.75,h1 = h3 =144 min, h2 = 0.22
mm, w = § = 0.2 mm.

100 pm, respectively, for s = 0.6 mm and s = 0.1 mm. It
is found in Figs. 5 and 6 that the effect of strip conductor
thickness becomes significant with the decrease of aperture
width, especially in the case of small aperture widths. The
above results indicate that even a small strip thickness gives
appreciable effects on the transmission properties in the case
of small aperture widths.

Figs. 7 and 8 show the variation of the effective dielectric
constant with regard to aperture widths for different values
of the strip conductor thickness and with regard to the strip
conductor thickness for different values of aperture widths,
respectively, at f = 1.0 GHz. It is found in Fig. 8 that the
increase of strip conductor thickness makes the field energy
concentrate into the aperture of air subregion resulting in the
reduction of the effective dielectric constants. Fig. 7 shows
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Fig. 4. Convergence properties with regard to the number of Green’s
function series terms and basis functions.
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Fig. 5. Effective diclectric constants versus frequencies for s = 0.6 mm.
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Fig. 6. Effective dielectric constants versus frequencies for s = 0.1 mm.
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Fig. 7. Effective dielectric constants versus aperture widths for different
values of strip conductor thickness.
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Fig. 8. Effective dielectric constants versus strip thickness for different
aperture widths.

that the increase of the aperture width leads to the monotonous
reduction of the effective dielectric constant in the case of zero-
thickness strip conductor. However, the same increase results
in a complex convex curve of the effective dielectric constant
in the case of strip conductors of finite thickness due to the
mixed effects of the aperture width and the strip conductor
thickness.

IV. CONCLUSION

In this paper, we described a full-wave boundary integral
equation method for the rigorous analysis of suspended planar
transmission lines with pedestals and/or finite metallization
thickness. Because it is possible for this method to take a large
number of terms in the series expansion of Green’s functions
for each subregion independently from the order of resulting
matrices, the approach can decrease the number of unknown
functions, shorten computation time, and can avoid relative
convergence problems. This method enables us to formulate a
system of equations using simple Green’s functions for each



ZHU AND YAMASHITA: FULL-WAVE BOUNDARY INTEGRAL EQUATION METHOD 483

subregion and to derive accurate solutions with a few terms of
equivalent magnetic currents. The complex effects of both strip
thickness and aperture width on transmission properties were
discussed in detail. The versatility of the boundary integral
approach makes this method useful to analyze the complex
planar transmission lines with fairly arbitrary conductor con-
figurations and substrate configurations.

APPENDIX
The sub-matrices, S, 5}7, 52" and S77, in (10a) to (10d)
are given by
54 :/ / w;(x o, zs)ul(z,)dz.dr  (Al)
512 / / (:c z)ul (z,)drsds  (A2)
321 / / wi(2)G (x,xs)ugc(xs)dxsdx (A3)
Sz?jz = / /.wi(x)G?]?(x,xs)ui(xs)dmsdx (A4)

where the four terms, G, Gi7,GZ} and G377, can be derived
directly from (7), while the wexghtmg functions, wi(z) or
w?(x), are the same as the basis functions, v’ (z,) or ul(z,),

are given by
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