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Pedestals and Finite Metallization Thickness
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Abstract—A new boundary integral equation method is pro-

posed for tbe full-wave analysis of suspended planar transmission
lines with pedestals and/or finite metallization thickness. Coupled

boundary integral equations are formulated on the equivalent

magnetic currents only on the apertures of subregions using
the Green’s identity of the second kind. Because it is possible
to take a large number of terms in the series expansion of
Green’s functions in each subregion independently from the

order of resulting matrices, this approach can avoid the relative
convergence problem. Numerical results of the present method

on suspended coplanar waveguides are found to have a stable

convergent property and to be in excellent agreement with other

available theoretical results, Numerical data reveal the effects
of conductor thickness and aperture width on the transmission

properties of suspended planar transmission lines with pedestals.

I. INTRODUCTION

sUSPENDED planar transmission lines with pedestals

audlor grooves have recently been studied as new

promising transmission structures [1]–[3]. Compared with

conventional planar transmission lines, they possess low prop-

agation losses and weak dispersion due to the distribution of

electromagnetic energy into the air region. In addition, they

still retain the merits of easy fabrication and planar configura-

tion. The transmission properties of such suspended striplines

with grooves and/or pedestals have been treated with the quasi-

TEM wave approximation [1] and with the full-wave analysis

without considering finite strip conductor thickness [2]–[3].

In the analysis of electromagnetic boundary-value problems,

the boundary integral equation method has been extensively

employed in the past to derive the cutoff wavelengths of

various waveguides, scattering parameters of waveguide dis-

continuities, and radiation properties of various antennas.

With the assumption of the quasi-TEM wave propagation,

the boundary integral equation method with different basis

functions has been applied to analyze the characteristics of mi-

crostrip lines [4] and coplanar waveguides [5]. The versatility
of the Green’s function makes it possible to use the boundary

integral approach to find solutions for various structures with

complex cross-sections [6]–[8], for instance, a trapezoidal

transmission line or a microstrip line of arbitrary cross section.

In addition, the eigen-function weighted boundary integral

equation method has been proposed for the rigorous analysis of

dispersion characteristics of various planar transmission lines

ManuscriptreceivedApril 3, 1992:revisedJuly 6, 1992.
The authorsarewith the Departmentof ElectronicEngineering,University

of Electro-Communications,Chofugaoka1-5-1,Chofu-Shi,Tokyo 182, Japan.
IEEE Log Number 9’205499.

with finite metallization thickness such as microstrip lines,

conductor-backed coplanar waveguides and micro-coplanar

strip lines [9]–[ 10].

In this paper, a full-wave boundary integral equation method

is presented for the rigorous analysis of planar transmission

lines with pedestals and/or finite metallization thickness. A

coupled set of boundmy integral equations is set up based on

the Green’s identity of the second kind as a process of the

boundary integration approach. Two kinds of simple scalar

Green’s functions corresponding to the TM-mode and the TE-

mode are selected for each shielded subregion. It is expected

that the overall boundary integration contours are reduced to

only those at the apertures between two adjacent subregions

to result in shorter computation time. Unknown functions in

the integral equations are also limited to those of equivalent

magnetic currents only at the aperture surface.

II. FORMULATION OF BOUNDARY INTEGRAL E@JATIONS

Fig. 1(a) depicts the cross-sectional geometry of a gen-

eralized suspended planar transmission line with pedestals

and/or finite metallization thickness. Many well-known planar

transmission lines can be constructed easily from this pro-

totype structure by properly changing sizes. Although their

propagation characteristics have been studied extensively us-

ing the transverse resonance method and an experimental

method without considering strip thickness [3], there still

remain unsolved problems, such as the effects of the conductor

thickness and aperture width on the transmission properties.

Only half of the general structure in Fig. 1(a) with an

equivalent magnetic wall has to be considered because of the

symmetry of the cross-section, which is shown in Fig. l(b).

The free-space Green’s function is usually chosen for building

boundary integral equations in the traditional boundary integral

approach. As for the structure with a complex boundary

configuration like Fig. 1(b), a large system of boundary
integral equations will be necessitated according to the above

traditional approach. This may be a principal reason why the

boundary integral approach is hardly extended to the full-wave

analysis of various planar transmission lines until now.

The whole cross-section is firstly divided into four rectangu-

lar homogeneous subregions for the cross-sectional geometry

with multiple rectangular subregions. A pair of scalar Green’s

functions for each subregion corresponding to the TM-mode

and the TE-mode are constructed based on the basic solutions

of the Helmholtz’s equation and the homogeneous boundary

conditions for a shielded rectangular subregion. These Green’s
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a3 I functions are expressed as follows:

where the symbols, p~(z,z~,y,ys ) and q~(~,~~, Y, Y.), de-

note the mth term in the above two Green’s functions in the

ith subregion and are given by (2a) and (2b) at the bottom

of the page and
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Fig. 1. Shielded suspended planar transmission lines with pedestafs.
(a) Cross-sectional geometry. (b) A half of the cross-section to be anafyzed.
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where ai, hi and k~m denote the width, the height, and the

propagation constant in the y direction for the ith rectangulm

subregion, while ($, y) and (z,, y. ) are the coordinates (of a

field point and a source point, respectively.

Based on the Green’s identity of the second kind,

--
a pair of boundary integral equations corresponding to the

TM-mode and the TE-mode can be set up with integrals

on dielectric interfaces or apertures between two adjacent

subregions as follows:

! OGe(r, r.)
E.(T) = – an –E.(r,)dI’ (5a)

r’s

H.(r) =
/

dH. (r.) ~r
G*(r, r.) on (5b)

r s

where, G= and Gh denote the two kinds of Green’s functions,

respectively, corresponding to the TM-mode and the TE-mode.

r and r. denote the field and source position, respectively.
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Since the Green’s functions and field component functions

satisfy the same tangential field continuity conditions on

shielded rectangular surfaces except aperture surfaces, only

apertures remain as necessary boundary integral areas. On

the other hand, according to the equivalence principle [11],

electric fields on the y’th aperture can be replaced by equivalent

magnetic surface currents in opposite directions, ihf~ and

–ihf~, flowing on the two sidewalls of a perfectly conducting

plane. The magnetic field components in the four subregions

are expressed as follows with simple integral formulas of the

equivalent magnetic currents using the relation derived from

Maxwell’s equations:

H;(Z, y) = – [JG;lM:dx. +
/ 1

G;zM: dx. (6b)
rl r,

where M: and M~ are the two components of the equivalent

magnetic surface currents on the jth aperture rj (j = 1,2, 3).

H: and H; denote the two components of magnetic fields

in the ith subregion (i = I, II, III, IV), while the symbols,

G~l, G~2, G~l and G~2, denote four terms of the dyadic
Green-s function, which are defined by using the m-th term

qtm of the magnetic Green’s functions as:

E;#k:– k:m 82q,m

-E ,2 —
@ –

xm axax,

m

(7a)

(7b)

(7C)

(7d)

Based on the continuity of tangential magnetic components

on each aperture surface between two adjacent subregions, a

pair of general boundary integral formulas on the ith aperture

can be formulated using the Galerkin’s method as

Jw;[H.(x, y,+)– H.(X> g,–)]dz = O (8a)
r%

A system of coupled homogeneous boundary integral equa-

tions are constructed by substituting (6) into (8), in which only

equivalent magnetic currents remain as the unknown functions.

In the mixed spectral domain approach [2], the transverse

magnetic fields across the aperture have to be transformed into

the space domain by the inverse Fourier transform because of

the existence of different transform variables on the two sides

of the apertures. The present method carries out all of the

analysis processes only in the space domain, therefore, can

omit the complex Fourier transform, and can treat piecewise

rectangular cross-section problems easily.

In practical computations, the number of terms in the series

expressions of the Green’s functions and the magnetic currents

are taken as finite, namely, N1, JV2, lV3 and IV4, for the four

subregions and, Ml, M2 and M3, on the three apertures, re-

spectively. Choice of the number N is completely independent

from the number M, Therefore, this approach does not lead to

numerical instabilities or relative convergence problems like

the mode-matching method as discussed in [12]. Simple sine

and cosine functions are selected as the basis functions for

equivalent magnetic currents. These functions can also expres

the accurate solutions of magnetic currents in the analysis of

the suspended planar transmission lines with grooves and/or

pedestals. Moreover, the same functions are chosen as the

weighting functions with the same number of basis function

on the three apertures, that is, Ml, M2 and M3. Consequently,

the coupled boundary integral equations are simplified as the

following form through numerical discretizations:

- [All] [Bll] [A12] [B12] [0] [0] ~;
[c,,] [D,,] [C,2] [D12] [0] [0]
[A21] [1321] [A22] [B22] [A2,] [B23]

111

[X21= [()]
[~:;] [D2~] [C2~][D22] [c23] [1123] [Z,]

[0] [A32] [B32] [A33] [B33] [X3]

- [0] [0] [C3Z] [D3z] [C33] [D33] [Z~]
(9)

where the symbols, [Xj ] and [Zj ], denote the unknown sub-

matrices about the two equivalent magnetic currents in the jth

aperture. [A,j ], [Bij ], [Czj ] and [D~j ] are four coefficient sub-
matrices with the unknown propagation constant indicating the

effect of the magnetic currents in the jth aperture on the fields

in the ith aperture. Each element of coefficient sub-matrices

is written as

(lOa)

(lOb)

(1OC)
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(lOd)

where the subscripts, ii and jj, denote two subregions above

and below the ith or jth aperture in the case (i = j), and ij

denotes the subregion between the ith and jth aperture. The

quantities, S~~, S~~, S~~ and S?!, are defined in the Appendix.

The summation form of Green’s functions will disappear

naturally with the orthogonal property of basis and weighting

functions with the same sine or cosine functions in subregions

II and IV. These facts also decrease computation time. In

addition, such basis functions as the sine and cosine forms can

also be applied directly to derive the propagation properties of

the fundamental mode and higher-order modes in this method.

Like the mixed spectral domain method, this approach

reduces the integration area of unknown functions only to

apertures between two adjacent subregions. This results in the

decrease of the number of unknown functions, a small system

of equations, and can avoid relative convergence problems

in the transverse resonance method or the mode matching

method, seen in the case of a small aperture width of planar

transmission lines as coplanar waveguides and fin-lines.

III. NUhIERICAL RESULTS

The above-mentioned approach can be applied to ana-

lyze the transmission properties of various suspended planar

transmission lines with grooves, pedestals, and/or finite metal-

lization thickness. Fig. 2 shows the comparison of numerical

results obtained by the present method with those given in

[3] for the fundamental and the second order mode of the

nonsymmetrically suspended substrate stripline in the case

of zero-thickness conductor. Fig. 3 shows the dispersion

characteristics of the shielded suspended coplanar waveguide

with strip thickness t = O and t = 130pm, the difference

between our results and the data given in [ 13] is less than 1.0%.

For the structure as shown in Fig. 1, the number of terms

in the truncated series of Green’s functions are proportional to

the widths of each rectangular subregion, while the number

of the magnetic current terms on the three apertures are

chosen as the same value M. In the case of M = 4, the

number N in the subregion I should be larger than 20 for the

aperture width s = 0.6 mm and 120 for s = 0.1 mm to lead

to accurate converging solutions for the suspended coplanar

waveguides with al = 4.8 mm, az = 6.5 mm, a3 = 5.5 mm,

+ = 10.5, hl = hs = 2.54 mm, hz = 1.27 mm, w = 1.2 mm.

On the other hand, if N = 400, M larger than 3 ensures high

calculation accuracy. The above-mentioned points are shown

clearly in Fig. 4 indicating the effective dielectric constants

versus N and M. It is found in Fig. 4 that taking IV = 400 and

M = 4 is enough to derive satisfactory numerical solutions

with computation time of 1 minute on a Sun 4 workstation for

one frequency point. To obtain stable solutions for different

subregions of a large ratio widths such as the case of s = 0.1

mm, the present method can be very effective compared with

other methods in the sense of a small number of unknown

functions and low order matrices.

Figs. 5 and 6 provide three dispersion curves for suspended

planar transmission lines with strip thickness t = 1,40, and
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Fig. 2. Comparison of the propagation constants of the nonsymmetrically

suspended substrate stripline calculated by the preseut method with those
given in [3] for the fundamental and the second order mode. al = 15.8 mm,

az = 23.86 UMII, as = 22.86 mm, % = 2.2, hI = 2.286 mm, hz = 0.254
mm, Its = 11.43 mm, w = 10 mm, s = 2.9 mm.
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Fig. 3. Comparison of the propagation constmts of the suspended copla-
nar waveguide calculated by the present method with those given in [13]

al=a2=as=l.55mm, cr = 3.75, hl = h3 = 1.44 mm, hz = 0.22

mmw=s=o.2 mm.

100 pm, respectively, for s = 0.6 mm and s = 0.1 mm. It

is found in Figs. 5 and 6 that the effect of strip conductor

thickness becomes significant with the decrease of aperture

width, especially in the case of small aperture widths. The

above results indicate that even a small strip thickness gives

appreciable effects on the transmission properties in the case

of small aperture widths.

Figs. 7 and 8 show the variation of the effective dielectric

constant with regard to aperture widths for different values
of the strip conductor thickness and with regard to the strip

conductor thickness for different values of aperture widths,

respectively, at .f = 1.0 GHz. It is found in Fig. 8 that the

increase of strip conductor thickness makes the field energy

concentrate into the aperture of air subregion resulting in the

reduction of the effective dielectric constants. Fig. 7 shows
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Fig. 4. Convergence properties with regard to the number of Green’s
function series terms and basis functions.

1 1 1

10 “

S=O.6mm

.Xx t=o

8 - — t=O.001 mm
g --------- t=O.04mm
w

6 -

._ ._. _ ------ ----

,$-1 ‘
I 1 I I

,00 ,01 ,02

f(GHz)

Fig. 5. Effective dielectric constants versus frequencies fors=O,6 mm.
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Fig. 6. Effective dielectric constants versus frequencies for s = 0.1 mm.
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Fig. 7. Effective dielectric constants versus aperture widths for different
values of strip conductor thickness.
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Effective dielectric constants versus strip thkkness for different
aperture widths.

that the increase of the aperture width leads to the monotonous

reduction of the effective dielectric constant in the case of zero-

thickness strip conductor. However, the same increase results

in a complex convex curve of the effective dielectric constant

in the case of strip conductors of finite thickness due to the

mixed effects of the aperture width and the strip conductor

thickness.

IV. CONCLUSION

In this paper, we described a full-wave boundary integral

equation method for the rigorous analysis of suspended planar

transmission lines with pedestals and/or finite metallization

thickness. Because it is possible for this method to take a large

number of terms in the series expansion of Green’s functions

for each subregion independently from the order of resulting

matrices, the approach can decrease the number of unknown

functions, shorten computation time, and can avoid relative

convergence problems. This method enables us to formulate a

system of equations using simple Green’s functions for each
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subregion andto derive accurate solutions with afew terms of

equivalent magnetic currents. The complex effects of both strip

thickness and aperture width on transmission properties were

discussed in detail. The versatility of the boundary integral

approach makes this method useful to analyze the complex

planar transmission lines with fairly arbitrary conductor con-

figurations and substrate configurations.

APPENDIX

Thesub-matrices, S~}, S#’, S~} and S#, in(lOa)to(lOd)

are given by

s:; =

//
) ‘(zs)d$sdz (Al)w~(z)G:}(z> Z~ Ua

ri rj

where the four terms, G~~, G&, G~J~and G~J2,can be derived

directly from (7), while the weighting functions, w:(z) or

w:(a), are the same as the basis functions, u; (x, ) or u: (z.),

are given by

w;(z) = 1sin

I

sin

w:($) =

Cos

( ((27?,– l)mr
Cos

)
(n=l,2,..., M,)

ai
zer3

(

?m(z – wi/2)

)
(n=l,2,..., M,)

s
Zcrl, r2

(A5)

((2VT9‘n=12”””Mi)
xer3

(
~~(~;w’/2)) (n= 0,1,..., M,)
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